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Mass transfer from a particle suspended in fluid with a steady 
linear ambient velocity distribution 
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This paper is concerned with the rate of transfer of heat or mass from a force-free 
couple-free particle immersed in fluid whose velocity far from the particle is steady 
and vanes linearly with position. Asymptotic results for both small and large PBclet 
numbers are considered. There is a t  least a four-parameter family of different linear 
ambient velocity distributions, but nevertheless a comprehensive set of results for the 
transfer rate may be compiled by combining previously published work with some 
new developments. Some of these are exact results for particular linear ambient flow 
fields and some are approximate results for classes of linear flow fields. 

For small PBclet number (P), the non-dimensional additional transfer rate due to 
convection is equal to aN,2 Pa, where No is the Nusselt number for P = 0 and the 
proportionality constant 01 is a parameter of the concentration distribution due to a 
steady point source in the given linear ambient flow field. A general method of deter- 
mining 01 is developed, and numerical values are found for some particular linear 
ambient flow fields. It is estimated that the value of a for any linear ambient flow 
field in which the vorticity does not dominate the straining motion lies within 10 yo 
of 0.34 when P is defined in terms of a particular invariant of the ambient rate-of-strain 
tensor E. 

At large PBclet number the transfer rate N depends on the velocity distribution 
near the particle, and attention is restricted to the case of a sphere in low-Reynolds- 
number flow. For a rigid sphere N = PP* for any ambient pure straining motion, and 
the Levich concentration-boundary-layer method may be used to show that P = 0.90 
for both axisymmetric and two-dimensional ambient pure straining, and probably for 
any other pure straining motion, when P is suitably defined. When the ambient 
vorticityo is non-zero, the sphere rotates, and the Levich method cannot be used. 
However, it  is shown that the part of the velocity distribution that varies sinusoidally 
with the azimuthal angle around the rotation axis does not affect the transfer rate 
and that N is asymptotically the same as for an ambient axisymmetric pure straining 
motion with rate of extension in the direction of the axis of symmetry equal to 
E,( =o . E .w/w2). In the exceptional case E, = 0, N approaches a constant as P-tco. 

It is possible to interpolate between the asymptotic relations for small and large 
PBclet number with comparatively little uncertainty for any ambient pure straining 
motion and for any linear ambient flow field in which o and E, are non-zero. 
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1. Introduction 
Calculation of the rate at which some diffusible quantity is transferred away from 

a surface a t  which the intensity is maintained a t  a constant value is a classical problem 
in applied mathematics, and appears in a number of different physical forms. The 
diffusible quantity might be a solute diffusing through a liquid, or a vapour diffusing 
through a gas, or it might be heat which is being conducted away from a phase boundary 
a t  which the temperature is maintained at a constant level. We shall be considering 
the class of such problems, rather than any one in particular, and will refer to the 
process as mass transfer (of solute) and to the local intensity as the concentration. 

The particular geometry to be studied here corresponds to transfer across the 
surface of a particle suspended in moving fluid of large extent, with a given difference 
between the values of the intensity at the particle surface and far from the particle. 
The purpose of the paper is to investigate theoretically the combined effects of diffusion 
and convection in the fluid on the rate of transfer from the particle surface. 

The concentration of the diffusible quantity in the fluid, to be denoted by C, 
satisfies the equation 

where u is the local fluid velocity relative to axes such that the particle has zero 
translational velocity and K’is the diffusivity. The fluid velocity u will be regarded 
as determined by specification of the ambient flow field, that is, by the velocity U 
(relative to the same axes) that the fluid would have in the absence of the particle 
and to which u tends as r ( = 1x1) -+ co. The boundary conditions are assumed to be 

C = C, 

C+C0 as r+co, 

at the particle surface A ,  

the origin of the position vector x being near the particle. The rate of transfer from 
the particle surface is then 

(? = - 1 Kn.vCd8, 
A 

where n is the unit outward normal to the surface of integration. 
We shall assume that the ambient flow velocity U is time-independent. 
The nature of the solution of equation (1 .1)  depends of course on the relative 

magnitude of the convection and diffusion terms, which is measured by the PBclet 
number P (to be given precise definition later). We shall investigate asymptotic 
expressions for the mass transfer rate for the two extreme cases, P 4 1 and P ,> 1, 
and it will be seen to be possible, in a t  least some cases, to draw interpolation curves 
without much uncertainty. The asymptotic expression that will be found for the case 
P < 1 holds for any shape or constitution (i.e. solid or fluid) of the particle and for any 
Reynolds number of the flow about the particle. On the other hand, the asymptotic 
results that can be obtained for P B 1 depend on the form of the fluid motion near 
the particle, and so in order to be able to obtain explicit results we shall assume in 
this case that the particle is a sphere and that the Reynolds number of the flow about 
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the sphere is small enough for the Stokes equation to  be applicable (which for practical 
purposes amounts to requiring that the Reynolds number be smaller than unity). 
The combination of the assumptions of flow governed by the Stokes equation and of 
large PBclet number is not without practical relevance, because Prandtl numbers for 
solutes are typically large (e.g. U / K  = 1.0 x lo3 for NaCl in water, and 2.2 x lo3 for 
sugar in water, both at  20 "C). 

Two alternative forms of the ambient flow field are suggested by practical transfer 
problems. If the density of the particle is different from that of the fluid, the particle 
is subject to gravitational and inertial forces which give it a translational motion 
relative to the fluid. Provided then that the variation of the ambient fluid velocity 
over a distance of one particle dimension is small compared with the particle velocity 
relative to the fluid, the flow near the particle and relative to it is effectively that 
due to  a particle held in a uniform stream. Thus here U is independent of x. If 06 the 
other hand the particle has the same density as the fluid, it  has no translational 
velocity relative to the fluid. Provided that the linear dimensions of the particle are 
small compared with distances over which the velocity gradient in the ambient flow 
field changes significantly, the flow near the particle is then effectively that due to a 
force-free particle immersed in fluid in which the ambient velocity varies linearly 
with position. Thus here 

ui = GiiXi. 

Most published theoretical work on the problem of transfer from a particle in a 
moving fluid concerns the case of uniform ambient velocity. In this paper we consider 
the many-sided case of linear variation of the ambient velocity. 

Since G is a second-rank tensor with eight independent components (when 
V . U  = 0) ,  a large number of quite different ambient flow fields are encompassed by 
this linear variation of U, some of which are of particular interest. The gradient 
tensor G can as usual be written as 

G = E+SZ, 

where the symmetrical part E represents a pure straining motion and the anti- 
symmetrical part S2 represents a rigid-body rotation with angular velocity & given by 

Ri, = -* %jk wk,  

w being the vorticity of the ambient flow. The straining motion can be regarded as 
specified by three scalar parameters needed to determine the orientation of the three 
orthogonal principal axes of E (pl, p,, p,, say; their precise meanings need not be spelt 
out) and by the three principal rates of strain, El,  E,, E,, only two of which are 
independent because the mass-conservation relation for incompressible fluid requires 
their sum to be zero. The angular velocity &w can now be conveniently specified by 
its three components in the directions of the principal axes of the rate-of-strain 
tensor E, to be denoted by Rl, R,, R,. A representative magnitude of the rate-of-strain 
tensor, E say, will be used to define the PBclet number, and the remaining quantities 
needed to specify the ambient flow can then be taken to be 

three orientation parameters pl, p,, p,, 
one ratio of principal rates of strain, for example (El  - E,)/E, 
and three angular-velocity components !2JE, Rz/E, R,/E. 

13-2 
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The orientation of the ambient flow is of course relevant only when the particle 
itself has an orientable shape which affects the transfer rate. We shall see that when 
P 4 1 the transfer rate is independent of particle shape; and in the case of a spherical 
particle, the particle orientation is irrelevant a t  all PBclet numbers. Consequently in 
these cases there is no dependence of the transfer rate on the orientation parameters 
p, ,  p2 ,  p3 ,  and only four parameters remain, aside from the PBclet number. Three of 
these four remaining parameters disappear for the important class of pure straining 
motions (when SZ ,  = 0,  SZ2 = 0, SZ3 = 0), leaving one defining parameter unspecified. 
And in the case of two-dimensional ambient flow, we have 

E3 = 0 (and E, = -El),  Ql = 0, s1, = 0, 

again leaving one defining parameter (viz. SZ3/El), with the particular case of simple 
shearing flow corresponding to SZ3/E1 = T 1. 

An attempt will be made to discuss the transfer problem for all these different 
kinds of linear ambient flow field systematically, with a brief account of previously 
published results and methods being given in the appropriate place. This paper is thus 
in part a survey and in part a presentation of some new developments. 

As a final preliminary we define the non-dimensional measure of the transfer rate, 
the Nusselt number, as Q divided by the product of K ,  Cl - C,, and dimensional factors 
representative of (C,-C,)-llVCI and of the area of the particle surface. Practice 
concerning the choice of these last two factors vanes. In this paper we choose these two 
factors as a-l and 4na2 respectively, where a is half the maximum diameter of the 
particle, so that the Nusselt number is 

Q 
4;.ra~(C, - C,)' 

N =  

The basis for this choice is that for a spherical particle of radius a in stationary fluid 
the solution is 

giving for the transfer rate a t  zero PAclet number 

Qo = 4; . ru~(C, -C~) ,  i.e. No = 1.t 

The PBclet number P will be defined as a / K  multiplied by a velocity characteristic 
of the ambient flow. For a linear ambient velocity distribution with gradient of 
magnitude G (there may be more than one scalar gradient involved, and the choice 
will be refined later), we may choose this characteristic velocity as aG so that the 
PBclet number is a 2 G / K .  And when results for a uniform ambient velocity of magnitude 
U, are mentioned, the PBclet number in use will be aUO/K. 

t Some authors choose ta-l and 47ra2 for the two-dimensional factors mentioned, in which case 
N o  = 2 for a sphere; and others choose u-l and a2, in which case N o  = 4n for a sphere. It seems to 
me that since there is no obvious choice for the length factor representative of (C, -Co)  IVCJ-1, 
the arbitrariness is best regulated by choosing this factor to give unity for the Nusselt number 
in the fundamental and easily remembered case of pure diffusion from a sphere. 
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2. Mass transfer from a particle at small PCclet number 
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General argument 

Whatever the particle shape, the steady distribution of concentration due to diffusion 
in stationary fluid (6, say) becomes spherically symmetrical at large distances from 
the particle, and 

6 4 ,  - - ‘O when r % a .  
471Kr 

When P < 1, the effect of motion of the fluid is to modify this distribution at  large 
values of r and to change the transfer rate. Concentration gradients become weaker 
with increasing distance from the particle, and the convection term u . VC in the 
governing equation (1.1) becomes relatively more important as r/a+ co. On the 
assumption that spatial differentiation changes the magnitude of a quantity by a 
factor r-l, we estimate the ratio of the convection and diffusion terms as of order 
T U / K ,  where U is the magnitude of the ambient velocity at distance r from the particle. 
Thus a t  positions near the particle, where r U / K  is of the same order of magnitude as 
the PBclet number P, diffusion effects are dominant, whereas at large distances such 
that r U / K  9 I the local distribution of C is dominated by convection effects. 

This problem is of the familiar type for which different asymptotic representations 
of the concentration are applicable in different parts of the field and a uniformly valid 
approximation to  C may be obtained by matching the two asymptotic representations. 
Matched asymptotic expansions of this kind and associated expressions for the 
transfer rate at  small PBclet number have been obtained by Acrivos & Taylor (1962) 
for the cases of a rigid sphere and a rigid circular cylinder in steady translational 
motion, by Brenner (1963) for a particle of arbitrary shape in steady translational 
motion, and by Frankel & Acrivos (1968) for the case of a rigid sphere in steady simple 
shear flow. Here we adopt a simple intuitive procedure which is adequate for the 
purpose of obtaining the leading term in the expression for the change in the transfer 
rate due to convection. This leading term depends only on the ambient flow and not 
on the flow field near the particle, unlike all further terms. The further terms give 
numerical information which is of limited value for the purpose of extrapolating 
between results for low and high PBclet number. 

We denote by rc (which is defined to order of magnitude only) the large value of r 
at which the convection and diffusion terms in the governing equation are comparable 
in magnitude; thus r U / K  is of order unity a t  r = r, (giving ?-,/a = O(P-l) for a particle 
in translational motion and r,/a = O(P-+) for a linear ambient velocity field). The 
transfer of solute from the particle surface to r = rc is brought about primarily by 
diffusion, and n 

at r = r, in a case where the total rate of transfer is Q. The transfer of solute in the 
range rc < r < cm on the other hand takes place primarily by the much more efficient 
process of convection, and the associated change in concentration is negligible. The 
effect of convection on the total rate of transfer is thus equivalent to increase of the 
overall concentration difference, in a pure diffusion problem, by a fraction 
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c= c, 

t 
C 

C =  C, Q 
4nKr, 
- 

I I 

I r = a  ' r = r c  
I r- 

FIGURE 1. The unbroken curve shows schematically the distribution of concentration C at small 
PBclet number. For r < rc, where diffusion effects are dominant, the curve is of the form 

C, + Q /  ( 4 7 7 ~ ~ )  + const. 

(except near the surface of a non-spherical particle); and for r > rc, where convection effects are 
dominmt C, is approxim8tely constant. The broken curve shows the concentration distribution 
at zero PBclet number with the same inner and outer boundary conditions. 

And since in the linear pure diffusion problem the rate of transfer is proportional to 
the overall concentration drop, we see that the fractional increase in the transfer 
rate due to convection when P Q 1 is 

Figure 1 illustrates this simplified description of the distribution of concentration. 
This relation (2.2) gives the dependence of AQ on the P6clet number (as P for a 

particle in translational motion and as Pi for a linear ambient velocity field) but for 
numerical information we must match the inner and outer asymptotic regions to 
better than order of magnitude. In  the inner region the pure diffusion equation is 
applicable, with the boundary condition C = C, a t  the particle surface A ,  and in the 
outer part of this inner region the departure from spherical symmetry of the con- 
centration distribution due to particle shape becomes negligible. In  the outer region 
where convection is important the fluid velocity u is approximately equal to the 
ambient value U and the governing equation is 

u . vc = KV'C, (2.3) 

with the boundary condition C+Co as r+co and an inner boundary condition 
representing the fact that C is spherically symmetrical and determined by diffusion 
alone there. The concentration distribution in the outer region is thus the same as 
if the particle were replaced by a point source of strength Q in the given ambient flow 
field. In  the inner part of this outer region C - C, is approximately equal to Q/47~~r,  
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and an improved approximation at small values of r, assuming analytic dependence 
on r, will be 

Q C-Co M -+AC, 
47TKT (2.4) 

where the second term ACis independent of r but may depend on the direction of x (this 
departure from spherical symmetry being a consequence of the effect of convection). 
This is the outer boundary condition for the distribution of concentration in the inner 
region. 

The additional transfer from the particle due to convection is now obtainable as 
a consequence of the fact that in the inner region C satisfies the diffusion equation? 
and an outer boundary condition of the form ( 2 . 4 )  a t  some large value of r, say r = R .  
We may write C as the sum of two solutions of V2C = 0, C' and C" say, where 

Q C'=  C, f o r x o n A  and C' =Co+-+(AC) at r = R 
47TKT 

and 
C" = 0 for x o n  A and C" = AC-(AC) at r = R, 

where (AC) denotes the mean of AC over all directions of x. Near r = R the harmonic 
function C" can be expressed as a series of spherical harmonics from which those of 
degree 0 and - 1 are excluded, because their means over all directions of x are non-zero, 
and so C" makes no contribution to the transfer across any closed surface. Also we 
know that if the outer boundary condition for C' were C' = Co + & / 4 n ~ R  a t  r = R the 
rate of transfer from the particle surface would be Qo. The rate of transfer from the 
particle surface associated with C' evidently differs from Qo in consequence of a change 
in the overall concentration difference (between the particle surface and infinity) by 
the amount - (AC). The additional rate of transfer due to convection is therefore 
given by 

N - N o  AQ (AC) -=-=-- 
No Qo Ci-co' 

Determination of AQ is thus reduced to the problem of finding the term AC in the 
expression (2 .4 )  for the concentration at  small values of r in the case of a point source 
in the given ambient flow field. 

t More accurately, the equation satisfied by C in the inner region is 

KV'C = U . v6, 
but, as Brenner (1963) showed for the case of a particle in translatibnal motion, the small source 
term on the right-hand side makes no contribution to the transfer from the particle. For if Cj 
denotes the solution of the inhomogeneous equation with boundary conditions Ci = 0 for x on 
A and a t  r = R ,  we have 

V.(q,+du) = 0 and V.(8qi-Ci4+&%) = 0, 
where 

qi = - KVci and 4 = - K V ~ ;  
and so 

n.q,dS and C, n.q,dS = C, n.q,dS, S A Sr =R 

giving 

fAn.gidS = 0. 
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This expression for A&/&, depends only on No, P and the ambient flow field, and 
does not otherwise depend on the particle shape or size. Nor does it depend on the 
distribution of fluid velocity near the particle. Consequently there is no need here for 
any assumption about the particle Reynolds number. However this latter gain in 
generality is not of much practical value because solute Prandtl numbers are usually 
larger than unity and if the PBclet number is small the particle Reynolds number is 
even smaller. 

A particle in steady translational motion through the $fluid 

The fluid velocity U in (2.3) is here uniform and equal to U,. Results are already 
available for this case, but we shall recover them in passing in order to show the 
applicability of the general method just described. 

We require the solution of (2.3) corresponding to a point source of constant strength 
Q at the origin. By superimposing the distributions of concentration for a sequence 
of instantaneous point sources in a uniform stream we find 

The integration in (2.6) can be carried out, giving 

Q C(x) = Co + - exp 
4nKr 

Thus, at small values of r,  

Q Quo 
4 n K T  8 n K 2  

c-co x - +-(case- I ) ,  

where 0 is the angle between the position vector x and the free-stream velocity U,. 
The second term on the right-hand side of (2.8) can be identified with the quantity 

AC in the general argument, and then from (2.5) we see that the fractional increase 
in the transfer rate due to the effect of convection is, to leading order, 

N - N  -0 _- -  - A& - Qo uo 
No Qo 8n~~(Ci-Co) 

= &NOP, (2-9) 

where P = aUo/K, as found by Brenner (1963). Brenner showed in addition that for 
a particle of arbitrary shape and constitution, and for low-Reynolds-number flow, 
the next term in the expansion is &No fP210g P,  where 67rpaU0 f is the magnitude 
of the force exerted across the particle surface. Acrivos k Taylor (1962) also 
obtained the result (2.9) for the case of a rigid spherical particle, for which No = 1, 
and went on to calculate higher-order terms, in P210g P, P2 and P310g P, for 
low-Reynolds-number flow. 

A point source in$uid with a steady linear ambient velocity distribution 
Consider now the case in which the fluid velocity in the absence of the particle has the 
linear form 

Ui = G,, x5 = (Eij + Rij) ~ 5 ,  (2.10) 
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where the coeficients satisfy the incompressibility relations 
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Gii = Eii = 0. 

We require to find the concentration distribution for a maintained point source of 
material at the origin in fluid whose velocity is U. This problem has been solved 
previously for a steady simple shearing motion of the fluid by Novikov (1958) (and 
again, independently, by Elrick (1962)), and it is not difficult to construct the solution 
for the rather simpler case of steady pure straining motion.? The method to be used 
here is applicable to any linear ambient velocity distribution and can be carried to 
the point of explicit numerical results for a representative set of particular linear 
ambient velocity fields. 

We begin by seeking a solution for the three-dimensional Fourier transform of the 
concentration distribution in the case of an instantaneous source of strength 'Qi at 
the origin. The concentration C(x, t )  here satisfies the equation 

aC aC 
-+G..X-- = KV2C, 
at axi 

of which the transform is 

(2.11) 

where (3 is defined by 

6(k,  t )  = e-ih.= {C(x ,  t )  - C,,} d x .  1 
Instead of trying to solve (2.11) directly it is simpler to note that the solution must 
be of the form 

e (k ,  t )  = Qi exp ( - Kki ki Bij) (2.12) 

and to choose the symmetric tensor 6 as a function oft so as to satisfy the equation. 
(The form (2.12) follows from the facts (a )  that - Gij ki can be interpreted as a velocity 
in k-space, in which event the left-hand side of (2.1 1) becomes the material derivative 
of e, ( b )  that the relation between the wavenumber vectors representing the positions 
of a material element in k-space at  two different times is linear, and (c) that at  t = 0, 
when C has a delta-function distribution with magnitude Qi, is uniform and equal 
to Qi.) Now the expression (2.12) satisfies the equation (2.11) provided 

which requires 

dBi5 -- - aij + Gi, Biz + a,, Biz. 
dt 

(2.13) 

All the components of B can be found as functions o f t  from this equation and the 
boundary condition 

Bij N s i j t  as t + O ,  (2.14) 

but we shall do this explicitly only for certain linear ambient velocity fields. 

t See Townsend (1951) for the temperature distribution due to an instantaneous source of 
heat in a pure straining motion with constant directions of the principal axes of the rate-of-strain 
tensor, from which the distribution for a maintained source follows by integration. 
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The Fourier transform of the concentration distribution for a maintained source 
at the origin of steady strength Q is now found by integrating (2.12) to be 

6(k) = Qsmexp(  0 -Kk{IcjB,,)dt. (2.15) 

The corresponding distribution in physical space is the Fourier transform of (2.15),  wiz. 

Q C(X) = co+- 
(477K)Q 

(2.16) 

where D denotes the determinant of the matrix B and b,, is the co-factor of the matrix 
element Bij. This expression for C can be written as 

Q C(X) = Co+-+ J(x), 
47TK7 

(2.17) 

where 

It follows from (2.14) that 

tbi5/D N Sij as t+O, 

with an error of order t ;  hence, as r -+ 0, J approaches a constant, which can be identified 
with AC in (2 .4) .  We have 

AC = lim J = - / m ( D - * - t + ) d t .  
r-+O (47TK)f 0 

(2.18) 

In  this case of a linear ambient velocity distribution, convection does not cause any 
departure from spherical symmetry in the term of order yo in (2 .4) .  

The additional transfer from the particle due to convection 

The fractional increase in the transfer rate due to convection now follows from (2.6) 
and (2.18),  and since Q differs from Qo by a small quantity only we have, to leading 
order, 

(2.19) 

Further progress requires a knowledge of D(t) ,  the determinant of the matrix B whose 
elements Bij are given by the equation (2 .13) .  We now find B,, and D for some parti- 
cular linear ambient velocity distributions. 

First, for a steady simple shearing motion with velocity components (yz', 0, 0) ,  
for which a complete solution for the concentration distribution due to a steady point 
source was found by Novikov (1958) and Elrick (19629, the only non-zero components 
of G and E are 

G,, = Y, El, = E,, = gy. 
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The equation (2 .13)  and boundary condition (2 .14)  are satisfied by 

Bll = t (  1 + i y2 t2) ,  B,, = t ,  B,, = t ,  B,, = *yt2, B,, = B,, = 0.  (2 .20)  

(2 .21)  

(2 .22)  

This integral can be expressed in terms of tabulated gamma functions. The additional 
transfer from the particle due to convection, as already found by Frankel & Acrivos 
(1968)  for this case, is 

(2 .23 )  

The alternative expression of the result in terms of the quantity E defined as (Eij  Eij)4, 
which here has the value y /2 /2 ,  will be commented on later. 

The transfer due to convection may also be calculated readily in the case of an 
ambient steady pure st,raining motion, for which G = E. We use axes coinciding with 
the principal axes of E, and the three principal rates of strain will be denoted by 
El, E,, E,. The equations (2 .13)  and boundary condition (2 .14 )  are here satisfied by 

~ X P  (2E3 t )  - 1 
9 (2-24) 

exp ( 2E1 t )  - 1 exp ( 2E,  t )  - 1 

2E3 
9 B33= 

2E2 
9 B, ,=  

2EI 
Bll = 

other components of Bij being zero, and so 

sinh El t sinh E ,  t sinh E,  t 
D = Bll B,, B,, = 

E l  E 2  '3 

(2.25) 

Hence we find from (2 .19 )  

- = No E)'/;[' -(sinh(E,q/E)sinh(E,q/E)sinh(E,q/E) q3E1 E2 E d E 3  )"I !!! q9' (2 .26 )  
N -  No 

NO 

where E2 = E: + Ei + E:. Note that the additional transfer due to convection is 
unchanged by reversal of the signs of El, E,  and E,, which is reminiscent of a general 
theorem due to Brenner (1967) . t  The integral in (2 .26)  can be evaluated numerically 
for particular values of the ratios of the principal rates of strain. The following two 
cases are the simplest 0110s : 
(u) two-dimensional pure straining motion, for which 

E l = - E , ,  E , = O  and E = , / 2 1 E 1 1 ,  

t Brenner's proof that the rate of transfer from a particle is unchanged by reversal of the flow 
velocity everywhere, regardless of the particle shape or the value of the PBclet number, applies to 
the case of a particle in translational motion but may be adapted to hold also for a linear ambient 
flow field. In  a later paper Brenner ( 1  970) found that the result holds also for some different 
forms of the condition satisfied by G a t  the particle surface. 
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the result being 

( b )  axisymmetric pure straining motion, for which 

El = E ,  = - 4 E 3  and E = ($)*lE3\ ,  

the result being 

N-No 

NO 

( 2 . 2 7 )  

(2.28) 

The transfer rate for an ambient pure straining motion can be regarded as a function 
of E and of one parameter which determines the type of straining motion and which 
we may choose as (El  - E, ) /E .  The whole set of geometrically different pure straining 
motions are covered if we begin with axisymmetric compression in the x3 direction 
(for which El > 0, E, > 0 and (El  - E,) /E = 0) and decrease E,  with El fixed until 
we reach E ,  = 0 and (E ,  - E, ) /E  = I /  J 2 ,  corresponding to two-dimensional motion 
in the (x3, xl) plane, and then decrease E ,  further with El fixed until we reach E ,  = - *El 
and (El  - E, ) /E  = 48, corresponding to axisymmetric extension in the x1 direction. 
But bearing in mind that the transfer rate is invariant to flow reversal, we see that it 
is sufficient to consider values of (El - E, ) /E  in the range from 0 to I /  J2  and that 
the value of N is stationary at the two end points of this range. The fact that the 
transfer rate is the same multiple of (a2E/K)t a t  the two end points of this range 
indicates that the relation 

(2.29) 

is likely to give accurate results for any pure straining motion. 

dimensional motion, which we may represent by 
A third case for which a solution of ( 2 . 1 3 )  is obtainable in simple closed form is two- 

a12 = El,-  Q, (721 = E12+ Q, 

all other components of G being zero. The solution of ( 2 . 1 3 )  is here 

+El, sinh (2(Ef2 - Q2)t t> 
Bll(E1, + Q) - Qt = B,,(E1, - a) + Qt = 

(Ef, - Q 2 ) t  
9 

Hence 
E?, t sinh2 ((E?, - Q2)* t}  a2t3 D =  - 

(E:, - Q2), E:, - Q2’ 
(2.30) 

which reduces to (2.20) in the particular case E l ,  = - Q = +y corresponding to simple 
shearing motion and to ( 2 . 2 5 )  in the case Q = 0 corresponding to pure straining motion 
with principal rates of strain E12,-E12, 0. The transfer rate follows from (2.19), 
although numerical integration seems to be necessary. It is hardly worth undertaking 
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since we already have the result for the cases 1 R/El,I = 0 and 1 and will discuss in a 
moment the case lR/Elzl 1.  

An approximate expression for ( N  - No)/N, which would hold for an even wider 
class of linear ambient velocity distribution than pure straining motion or two- 
dimensional motion would of course be useful. Such an approximation can be found 
by writing B, as a power series in t :  

Bii(t) = tsii + t2Big' + t3B$) + . . . 
and by using the equation (2.13) to determine the first few coefficients. We find 

B!2) 23 - - 1 z(Gij+Gji) = Eij 

B$) = $Ei lEj l+  &(Eil Rjl+ Ej l  Ril). 

If now we choose the axes of reference to coincide with the principal axes of the rate- 
of-strain tensor E, the non-diagonal components of B@) and B(3) are zero and so, correct 
to terms of order t2, 

(2.31) 

where E = Eij  Ei j  as before. The value of ( N  - No)/N, corresponding to this approxi- 
mate expression for D is seen from (2.19) to be 

N - N o  a2E 4 Aq' 
(47TK) 1 0  dq' 

-- - N  - 
NO 

The integral may be expressed in terms of gamma functions, giving 

(2.32) 

(2.33) 

Further terms in the series describe the way in which D/t3 varies at large t and, 
provided D/t3 --f co as t -+ co (which amounts to a requirement that the cloud of material 
is extended appreciably by convection in a t  least one direction), it is evident that these 
further terms do not have much effect on the value of the integral in (2.19). The 
numerical coefficient in (2.33) is 6 yo too small in the case of pure straining motion 
and 10 yo too large in the case of simple shearing. Aside from providing a fair estimate 
of the transfer for a very wide class of linear ambient velocity distributions, (2.33) 
reveals E as the primary parameter determining the convective transfer (as had been 
noticed earlier from the results for different pure straining motions). 

The partial suppression of the effect of convection by strong rotation 

There is one circumstance in which the estimate (2.33) will be less accurate, viz. when 
the magnitude of the angular velocity vector (&lwl, = R say) is large relative to the 
components of the rate-of-strain tensor. The effect of a strong rotation is to change 
the form of the streamlines so that instead of being open curves extending to infinity 
they resemble closed curves enclosing the rotation axis, and these closed curves 
become more nearly circular as R increases still further, with a consequent suppression 
of the contribution to the transfer due to the convection associated with some (but 
not all) of the components of the rate-of-strain tensor. 
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This may be seen most clearly from the above consideration of two-dimensional 
ambient motion, in the (xl, x2) plane. The components of $o are here (0, 0, a), and the 
directions of the x1 and x2 axes are such that El, = 0, E,, = 0. The stream function 
describing this motion is 

$ = - *X;(E,, + a) + *xz"(E,2 - a), (2.34) 

and the streamlines are hyperbolae when 1 Q/E,,I < 1 and ellipses when 1 a/E,,I > 1.  
The ratio of the principal diameters of the ellipses tends to unity as El2/SZ -+ 0, and 
in this limit the increase in the rate of transfer from the point source a t  the origin due 
to convection is zero. Analytically, we see from (2.19) and (2.30) that the transfer 
rate is given by 

N - N o  -- u(C~~-E:~)*S,( 1- ( Q2 - E!,)* s ds 
( a2s2 - EF2 sin2 .)*I 3 NO - N o  (47TK)b 

when 1 Q/El2I > 1. Hence, as I Q/El2 [  -+ 00 

a2E * E 8 
=&No(-;;-) (a) ) (2.35) 

E being equal to (2E9B in this case. The suppression of the convective transfer by 
rotation in this case of two-dimensional motion is thus quite strong. 

But on the other hand it is clear that, if an axisymmetric extensional motion, with 
the axis of symmetry coinciding with the x, axis, is combined with rotation about the 
x, axis, the convective transfer due to this axisymmetric extensional motion is 
unaffected by the rotation. 

Consider now the general linear ambient velocity distribution, with the x, axis in 
the direction of o and the directions ofthex, and x, axes such that El ,  = E,,, = - $E33. 
We shall write E = E@)+ E('), where 

-3E33 0 0 0 - s z  0 

E(@= (; 
;,,), E m =  (&; ;,, :), Q =  (," ; ;), 

and we shall suppose that all the components of E(I) have small magnitude relative to 
Q (there being no need for any restriction on E,,). The equations determining the 
components of B aye now obtained by substituting in (2.13). It can be seen without 
difficulty that they are satisfied by the following perturbation scheme: 

(2.36) 

where T = at, E'2 = E:, + E t  + E,2, (E' being a convenient common measure of the 
magnitudes of E12, E,, and E,,), and tB$)(t) denotes the solution for a pure straining 
motion consisting of a principal rate of extension E,, in the direction of the x3 axis 
and principal rates of extension - $E3, in two orthogonal directions (so that tBi!), 
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tB!#, tB@ are given by (2.24) with El = E,  = -aE,,, E ,  = E,,). The equation for 
B$ is 

and = 0 a t  T = 0 in order to ensure that (2.36) satisfies (2.14). However, there is 
no need to solve this equation for all the perturbation quantities B$), because we are 
interested only in the determinant D,  which is given by 

correct to the first order in the small quantity E’/Q, and we find immediately that 

Bg) + B$ = 0, Bg) = 0. 

It appears therefore that when the angular velocity Q is large the rate of transfer 
from the point source is equal, correct to the first order in the small quantity E’/Q 
to that associated with an axisymmetric pure straining motion with rate of extension 
E,, in the direction of the axis of symmetry, that is, in terms of quantities which are 
independent of the axes of reference, with rate of extension 

E, =a. E .o/& (2.38) 

in the direction of the axis of symmetry. The formula (2.28) then gives 

The case in which E’/Q and 

is then very small although 

3. Mass transfer from a 

I E,1 / E  are both small is clearly exceptional, and 

( N  - No)/% 

the exact order of smallness is uncertain. 

particle at large PCclet number 

(2.39) 

At large values of the PBclet number concentration gradients are large near the 
particle surface, in general, and boundary-layer theory may be applied to the con- 
centration distribution. Furthermore, if the Prandtl number v/K is large compared 
with unity, as we shall assume, velocity gradients change much less rapidly than 
concentration gradients near the particle surface, and so the velocity gradient is 
approximately constant across the concentration boundary layer. This is the basis of 
an extensive body of theory concerning the mass transfer from a stationary rigid 
particle in a steady flow field (Levich 1962). We shall describe here a generalized 
version of the theory which applies to cases in which the tangential stress and solute 
flux density a t  the particle surface are functions of more than one position co-ordinate, 
and will then use it to calculate the total transfer rate from a spherical particle 
immersed in steady ambient pure straining motions of different kinds at  small Reynolds 
number. The theory applies only when the flow relative to a stationary particle surface 
is steady, and so cases of force-free couple-free spherical particles immersed in fluid 
for which the ambient vorticity is non-zero are excluded, in general, because the 
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particles then rotate; but we shall see later that, rather surprisingly, the new theory 
that is needed for such cases is quite simple. 

General theory for a stationary particle in a steady $ow field 

The steady concentration distribution is a solution of the equation 

U . vc = Kv2C, 

with the boundary conditions 

C = C, at the particle surface, C + C,, as 1 X I  -+a. 
Within a concentration boundary layer adjoining the particle surface only the con- 
tribution to V2 from the normal derivative is significant. The normal derivative of the 
component of u parallel to the particle surface will be taken as constant across the 
concentration boundary layer, as already mentioned; and when the particle is rigid 
and the fluid velocity is zero at the particle surface, the direction of the fluid velocity 
is constant across the concentration boundary layer. We introduce orthogonal co- 
ordinates <, y, < such that < is the normal distance from the particle surface, and the 
y-co-ordinate line is parallel to the local fluid velocity. The y-co-ordinate lines in the 
particle surface are parallel to the tangential viscous stress there and define what we 
shall call the ‘surface streamlines’. The above equation thus reduces approximately to 

in the concentration boundary layer, where hs( = 1)) h,, h, are the three metric scale 
factors and h7 and h, are functions of y and g .  The velocity components are of the form 

uf; = t2, u, = m y ,  0, us = 0, (3.2) 

where F (  > 0) is the magnitude of the local tangential stress divided by the fluid 
viscosity. 

Since u, = 0 everywhere within the boundary layer, we can define a stream function 
@ to which the velocity components ut and u, are related in the usual way, viz. 

and comparison with (3.2) gives 

@ = @h, F .  ( 3 . 3 )  

If now we write the differential equation ( 3 . 1 )  with @, y as independent variables in 
place of c, y (a familiar transformation in boundary-layer theory, introduced first by 
von Mises (1927)), it  becomes 

where 

!!! = Ch,F = (2@hgF)4. 
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The factors h,, h,, F ,  none of which depends on 4, may be gathered together in a new 
variable 

T = K h7h,(2h,F)4d7, (3.4) s 
whence the equation becomes 

The boundary conditions to be satisfied by the solution of this equation are 

C = C ,  a t  $ =  0 (wherec= 0 ) ,  C+C, as $-+GO. 

We assume that each surface streamline begins (i.e. 7 = 0 there) a t  a point where 
the surface tangential stress vanishes, and the constant of inhgration in (3.4) will be 
chosen so that r = 0 at 7 = 0. There is no boundary condition to be imposed a t  r = 0, 
except the requirement that there be no singularity there. Thus the boundary con- 
ditions do not involve any dimensional parameter (C, and C, are of course not relevant, 
since they could be rernoved from the boundary conditions by taking the dependent 
variable as (C - C,)/(C, - C,)),  and the required solution of (3.5) must be a function 
only of the dimensionless combination 

x = @/rf. (3.6) 

In  terms of this similarity variable the equation reduces to 

of which the required solution is 

(This integral is one of the incomplete gamma functions, and 1.170 is its asymptotic 
valuet as x-+oo.) Remarkably, the distribution of concentration with respect to the 
variable x is the same at  all points on a surface streamline and on all surface stream- 
lines; only the relation between x and position in the concentration boundary layer 
varies. 

The local density of solute flux across the particle surface is thus 

The total rate of transfer across the portion of the particle surface that is traversed 
by surface streamlines emanating from a position of zero tangential stress where 

t It is given incorrectly as 1.15 on page 84 of the book by Levich (1962), and this small slip 
affects some of the numbers on subsequent pages. 
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7 = 0 (and 7 = 0) and ending at another position where F = 0 (7 = rl and 7 = rl, 
say) follows from integration with respect to 9 and 6: 

(3.10) 

We see that, regardless of the choice of length and velocity scales in the definitions 
of the Nusselt and PBclet numbers, N is proportional to Pf, as of course was evident 
from the way in which 5 and K enter into the relations (3.1) and (3.2). 

This theory for mass transfer a t  high PBclet number has been available for many 
years in various particular forms appropriate to cases in which C does not depend on 
the lateral co-ordinate 6. It appears to have been given first by V. G .  Levich in the 
early nineteen-forties (see Levich 1962, chap. 2) for the case of transfer from a thin 
flat plate immersed in a steady uniform stream parallel to the plate a t  large Reynolds 
number with V / K  9 1.  Independently Lighthill (1950) found a series solution of the 
von Mises equation (3.5) for the case of transfer from a two-dimensional body in a 
stream with an arbitrary steady distribution of tangential stress a t  the body surface 
(provided F does not change sign), and, although he did not obtain the concentration 
distribution in the closed form (3.8) (this further step being taken by Acrivos (1960)), 
he was able to find the total rate of transfer from the plate. Morgan & Warner (1956) 
also noted that the total rate of transfer is proportional to fi for various two-dimen- 
sional or axisymmetric steady flow fields a t  large Reynolds number in which the 
concentration boundary layer is much thinner than the velocity boundary layer. The 
transfer rate has also been calculated for various axisymmetric flow fields, as will be 
mentioned in a moment. 

We note from (3.10) that if the flow velocity is reversed everywhere the roles ofthe 
two ends of each surface streamline (7 = 0 and 7 = ql) are interchanged but the total 
transfer rate Q is unaffected. This again extends the conditions of the result found by 
Brenner (1967), and it shows also that when P 9 1 the unit for which the total transfer 
is invariant to flow reversal is not the whole body but the portion of the body surface 
traversed by streamlines joining two points of zero tangential stress. The result is 
surprising, because as Brenner noted, the distribution of mass flux density a t  the 
particle surface may be quite different when the flow is reversed. 

Our concern in this paper is with specific results for a spherical particle immersed 
in the steady linear ambient velocity distribution V, = Giixj. The sphere is assumed 
to be couple-free, so it rotates with the same angular velocity +w as the fluid. Since 
the theory applies only to a particle with a stationary surface, we must suppose that 
w = 0 for the moment, leaving only the pure straining motion Ui = Eij xj. The velocity 
distribution in low-Reynolds-number flow due to a rigid sphere of radius a immersed 
in a pure straining motion characterized by the rate-of-strain tensor E is known 
(Batchelor 1967, p. 249) to be 

u = ~ . E ( l - ~ ) - ~ x ~ ~ ( l - ~ ) .  x.E.xa3 a2 
(3.11) 
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Near the surface of the sphere the fluid velocity is 

u w 5 < ( 1 . E - l l . E . 1 ) ,  (3.12) 

where 1 = x / r  and [( = r -a)  Q a. In  terms of spherical polar co-ordinates ( r ,  8, #), 
with 8 = 0 in the direction of the principal axis of E associated with the principal rate 
of strain E3 and 8 = in, q5 = 0 in the direction of the principal axis associated with 
El, the 8 and 4 components of the velocity near the sphere surface are 

u, = ZEsin 28 { - 3E3 + (El - E,) cos 2q5)I 
(3.13) 

u) = $[ sin 8 sin 24 (E,  - El), J 
where the three principal rates of strain satisfy the relation 

E,+E,+E3 = 0. 

The tangential stress a t  the surface vanishes at  the six points (i) 8 = 0,  (ii) 8 = n, 
(iii) 8 = *T, q5 = 0, (iv) 8 = +T, 4 = n, (v) 8 = in, q5 = in, (vi) 8 = in, 4 = +n, and in 
general surface streamlines emanate from the two or four points associated with 
negative principal rates of strain and end at  the four or two points associated with 
positive principal rates of strain. 

Xteady axisymmetric flow about a spherical particle 

We choose the origin of the polar angle 8 to be the direction of the axis of symmetry, 
so that the surface streamlines are longitudinal lines q5 = const. On making the 
substitutions 

7 = 8, 5 = 4, h, = a, h, = asin8 

in the formula (3.10) we find for the rate of transfer from the portion of the sphere 
surface swept by surface streamlines joining points of zero tangential stress a t  8 = 0 
and 8 = el 

e P 
Q = l~6 l6nda~(Cl-C0)  (s sin88Ftd0) . (3.14) 

0 

The first specific result of this kind to be published concerns a rigid sphere immersed 
in a steady uniform stream of speed Uo at small Reynolds number (Levich 1962), for 
which 

el = n, p(o) =!%sine (u, > 0). 
2 a  

The non-dimensional rate of transfer from the sphere here is 

More relevant to the subject of this paper is the result obtained by Gupalo & 
Ryazantsev (1972) for a rigid sphere immersed in a steady ambient axisymmetric 
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pure straining motion.? There are here two sets of surface streamlines, each one 
joining one of the poles 8 = 0, n- to the ‘equator ’ 8 = in, and 

8, = Sn, F(8)  = - J$-E,sin 26 (E,  < 0)) El = E, 

in the notation of (3.13). The rate,of transfer from the whole sphere surface is thus 

where 

that is 

N = 0.968 - r2Y+* (3.15) 

If E ,  0, the surface streamlines are reversed, and emanate from the equator and 
flow towards one of the two poles. We can here see explicitly from (3.9) that the mass 
flux density does not have the same distribution over the particle surface as in the 
case E ,  < 0 (being of order unity near 8 = 0 for E ,  < 0 and of order 8 near 8 = 0 
for E, > 0), but the total transfer is unchanged. 

It is worth noting in passing that we may also calculate from (3.14) the transfer 
from a rigid sphere in translational motion (parallel to the direction 8 = 0) through 
fluid whose ambient motion is a pure straining with symmetry about 8 = 0. In this 
case we have 

F ( B )  = 3 9 sin 8 - ~ Z - E ,  sin 20 (u, > 0) 
2 a  

where P = 5aE,/U,. Points of zero tangential stress occur at  8 = 0 and 8 = n, and also 
at  cos-lP-l if > 1. Thus, if 1/31 < 1, each surface streamline goes from pole to pole 
and we may express the total transfer as 

225 4 Q = 1.6l6nh-%8(C1-Co) -- + -3:) I%,  
4 a2 4 

where 

Gupalo & Ryazantsev remark that any linear ambient flow field may be regarded as a 
superposition of three axisymmetric pure straining motions and a rigid-body rotation, and that 
the latter can be removed by the use of rotating axes; and they appear to imply that the transfer 
from a particle in a general steady linear ambient flow field can consequently be calculated from 
a knowledge of the transfer from a particle in a steady axisymmetric pure straining motion. This 
is not so, first because the concentration distributions associated with two or more ambient 
axisymmetric pure straining motions cannot be superimposed, and second because relative to 
rotating axes the pure straining component of the linear ambient flow field is no longer steady. 
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This integral could be evaluated numerically for several values of /3 but it is sufficient 
here to notice that I3 varies smoothly between the values 

{ I (  T l)}f = 1.183, ( I (0) ) f  = 1.351 

a t  the two ends of the range. On the other hand, if 1/31 > 1 ,  there are two sets of surface 
streamlines and the total transfer is 

Q1 + Q, = 1-616n~fa3(C, - C,) (:;2i - - ’+ - 2: Ei ) #  (If + I t ) ,  

where 

We already have the result 

(Il( T ,)}a + (I,( T a))* = 2(11( T a)}* = 2J3 = 1-225. 

It appears therefore that the ratio of the total transfer to (tUg/a2 + v E $  does not 
vary by more than about 14% over the whole range of values of the parameter /3 
measuring the relative strengths of the translational and ambient pure straining 
motions. (The variation could be made even less by choosing this dimensional factor 
as {($Uo/a)2fl + (J#-E3)2n}1/6n with n having a value larger than 1. )  

Gupalo & Ryazantsev (1972) also calculated the transfer from a spherical liquid 
drop immersed in a steady axisymmetric pure straining motion by a variant of the 
above method. In  the governing equation (3.1) (in which u9 = 0 )  the velocity com- 
ponent ut here does not vanish a t  < = 0 and is approximately constant across the 
concentration boundary layer, from which it follows that the concentration boundary- 
layer thickness is proportional to P-4 and the rate of transfer from the sphere surface 
is proportional to P t .  But we shall not investigate the transfer from a liquid drop 
in other linear ambient flow fields. 

More recently, Gupalo, Polyanin & Ryazantsev (1976) have obtained the expression 
for the mass transfer from a stationary particle in an arbitrary steady axisymmetric 
ambient flow field, and have calculated in particular the transfer from a spheroid 
immersed in a stream parallel to the axis of symmetry at  low Reynolds number. 

Two-dimensional pure straining motion 

The type of pure straining motion that is next in order of simplicity appears to be 
two-dimensional motion (El = - E,, E, = 0) .  We see from (3.13) that in this case the 
velocity near the sphere surface is given by 

ue x %<El sin 28 (3  + cos 24), = <Fe say,\ 
(3.16) 

When El > 0, one set of surface streamlines emanate from the pole 8 = 0 and divide 
into two sets one of which flows into the point 6’ = hn, q5 = 0 and the other of which 
flows into the point 8 = in, q5 = n; and there is a mirror image set emanating from 
the opposite pole 8 = n. The equation to these surface streamlines is 

u$ z -g<~,sinesin24, = [F~ say. j 

sin 8 dq5 - ae 
4 sin 28 (3 + cos B#) - -sin 8 sin 2#’ 
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''I 

e = t  = tlr 

q = m  

FIGURE 2. The surface streamlines on one octant of a sphere in a two-dimensional pure straining 
motion at low Reynolds number (schematic only). The x1 and x, axes are principal axes of the 
rate-of-strain tensor. The arrows apply to a cam in which E,  > 0. 

of which the solution is 

tan2 8 tan3 q5 sin 2q5 = Y. (3.17) 

The surface streamlines covering the octant 0 < 0 < in, 0 < q5 < in are given by values 
of the constant Y in the range from 0 to co (see figure 2), and it is sufficient to consider 
the transfer from this portion of the surface of the sphere. 

The 7-co-ordinate lines coincide with these surface streamlines, and we can identify 
6, the orthogonal co-ordinate, with Y.  To make use of the formula (3.10) we need to 
find the metric scale factor h,. Now the square of the length of a line element on the 
surface of the particle may be expressed in terms of the two alternative orthogonal 
co-ordinate systems, giving 

a2 8e2 + a2 sin2 0 8q52 = hi 872 + h? 852. 
We also have 

from which it follows that 

(3.18) 

The fact that the q-co-ordinate lines coincide with the surface streamlines gives 

whence 

(3.19) 
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On substituting from (3.17) (with Y E 5)  and using (3.16), we find 

391 

5E1a 
ht = (-) sin2 8 sin2 20 sin2 24, 

where F = (Ff + F:)* is the magnitude of the tangential stress a t  the sphere surface, 
divided by the viscosity, introduced earlier. 

The integral in (3.10) along the length of a surface streamline is thus 

4 5  IElltat sin8cos~8{(1+8~--1tan28)*-1}~ d8. (3.20) 
8.2* s o 5( 1 + 85-l tan2 O)* 

- - 

The rate of transfer Q from one octant of the sphere surface is now obtained from 
(3.10), with the range of integration with respect to 5 being from 0 to co, and the 
non-dimensional rate of transfer from the whole surface is 

(3.21) 

where L(5) denotes the integral in (3.20). Numerical integration is needed to give L 
as a function of 5. A second numerical integration then gives the value of the integral 
in (3.21) as 5-16, whence we have 

N = 1.009 ( y )  a V 1 I  * . (3.22) 

This case of transfer from a sphere immersed in a two-dimensional pure straining 
motion has been considered by Poe (1975), in a Ph.D. dissertation describing work 
done a t  the Stanford University under the supervision of Professor A. Acrivos. Poe's 
method was quite different in detail and involved the finding of a function g(8, 4) 
such that there exists a solution of the governing equation for C (with 5, 8, q5 as 
independent variables) which is a function of ( /&g alone, there being no explicit 
reference to the surface streamlines and no use of the von Mises transformation. Our 
generalized Levich method is more direct inasmuch as it shows that such a similarity 
solution must exist (and I do not think this could have been anticipated), and as a 
consequence of relating the similarity solution to the development of the concentration 
boundary layer along a streamline we are able to make the integration with respect 
to 7 analytically in the step preceding (3.10), thereby giving the total transfer as a 
double integral in place of Poe's triple integral. But Poe's calculation, which led to 
exactly the same numerical result (3.22) despite the quite different analytical forms, 
has the undeniable merit of having been made first. 

Purcell (1978) has recently described measurements of the heat transfer from a 
solid sphere maintained at a constant temperature and immersed in fluid subjected 
to a steady two-dimensional pure straining motion. The Reynolds number of the 
motion was small and the P6clet number a2\E,\/~ was varied over the range 0-33 to 
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FIGURE 3. The rate of transfer from a sphere immersed in a steady two-dimensional pure straining 
mot,ion with principal rates of strain El, -El. N is the Nusselt number ( = 1 for P = 0). P is the 
PBclet number a21ElI /~ .  The points marked 0 are measurements made by Purcell (1978) in a 
bounded flow field. The curve marked P & 1 is the asymptotic relation (3.22). The curve marked 
P < 1 is the asymptotic relation (2.27) which applies to an unbounded flow field. 

24. The thickness of the thermal boundary layer at  large PBclet number is roughly 
a(a21E,1/K)-*, and so the PBclet number would need to be considerably larger than 24 
before the thermal boundary-layer thickness is small compared with the sphere radius. 
Nevertheless a comparison between Purcell’s measurements and the theoretical result 
(3.22) should have some value as an indication of the error in the asymptotic results 
at these PBciet numbers. It appears from figure 3 that the observations are rather far, 
surprisingly far, from the theoretical large-P curve at values of P near 20. It was 
partly the discrepancy between these measurements and the large-P asymptotic 
relation calculated by Poe that led me to make the independent calculation described 
above as a check. Either the asymptotic relation provides a very poor guide to the 
magnitude and the trend of the transfer rate at  values of P below 30, or the measure- 
ments made by Purcell were affected in some way by the presence of an outer boundary 
to the flow field. Whatever the explanation, there is a need for more experiments, 
with this and other linear ambient velocity distributions. 

Also shown on figure 3 is the theoretical result (2.27) found earlier for small PBclet 
number. The disagreement between this theoretical small-P curve and the observations 
is not unexpected, because the ambient pure straining motion in Purcell’s experiment 
was disturbed by boundaries a t  distances from the sphere of about eight radii. The 
outer parts of the flow field are of course relevant to the transfer a t  small PBclet 
number, and the additional transfer due to convection in an enclosed flow field would 
be an analytic function of the PQclet number and so would vary as P2 as P + 0 (not 
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as the first power, because that would give a decrease in N when the flow was reversed), 
instead of as Pb in an unbounded flow field. 

Other ambient pure straining motions 

It is possible that the rate of transfer from the sphere at  large PBclet number could be 
calculated by the method described above for other pure straining motions, but the 
general similarity of the results obtained for axisymmetric and two-dimensional pure 
straining motions suggests there is little need to do so. Although there is not the same 
analytical reason for believing that the transfer depends primarily on the parameter 
E( = (E;+ Eg + E:)t) as in the case of small PBclet number, the two available results 
become very close numerically when expressed in terms of E ,  for we then have 

(a )  for steady axisymmetric pure straining given by El = E,  = - QE3, E = J# I E,I , 

(3.23) 

( 6 )  for steady two-dimensional straining given by El = - E,, E,  = 0, E = J2 I E l ( ,  

(3.24) 

For given El which can be regarded as specifying the intensity of the motion and 
the PBclet number, pure straining motions form a one-parameter family. The defining 
parameter can conveniently be chosen as (El-E,)/E, and, for exactly the same 
reasons as in the case of transfer at small P6clet number, it  is sufficient to  consider the 
transfer for values of (El - E,)/E in the range from 0 (corresponding to axisymmetric 
straining about the x,-axis) to 1/42 (corresponding to two-dimensional motion in the 
(x,, xl)-plane). Moreover the transfer rate has a stationary value a t  these two values 
of (El - E,)/E. Since the non-dimensional transfer rate has been found above to have 
almost the same value, for given El  at these two ends of the range, there is very little 
scope for variation of N a t  intermediate values of (El - E,)/E. 

N = 0.90(a2E/fc)9 (3.25) 

is thus likely to apply accurately a t  large PBclet number for any ambient flow field 
which is a steady pure straining motion. 

The relation 

Ambient velocity distributions with non-zero vorticity 

We consider now steady linear ambient velocity distributions which are a combination 
of a pure straining motion characterized by E and a rigid-body rotation with angular 
velocity QW (and 4101 = a). The force-free couple-free sphere here rotates with the 
fluid with angular velocity 40, and we cannot calculate the transfer by the method 
used above since it requires a stationary particle surface relative to axes such that 
the flow is steady. 

In the case of transfer a t  small PBclet number we saw that, when R is large relative 
to the components of the rate-of-strain tensor E, the effect of the rotation is to suppress 
the contribution to the convective transfer from all components of E except those 
associated with axisymmetric extension or compression in the direction of the axis 
of rotation, essentially because the strong rotation causes the streamlines of motion 
in the plane normal to the rotation axis to be nearly circular and so ineffective in 
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carrying material away from the particle. It is evident that a similar effect will occur 
a t  large PBclet number. Furthermore, whereas a t  small PBclet number a strong rotation 
is needed, we may expect that at  large PBclet number this suppression of the convective 
transfer due to certain components of the pure straining motion will occur at any 
non-small value of Q, because within the thin concentration boundary layer the 
contribution to the fluid velocity due to the ambient pure straining motion is pro- 
portional to distance from the sphere surface and so is small. This will lead us to the 
remarkable and paradoxical conclusion that calculation of the transfer rate a t  large 
PBclet number is simpler when the ambient vorticity is non-zero than when it is zero. 

The fluid velocity is here a superposition of a rigid-body rotation with angular 
velocity of magnitude !2 and the contribution (3 .11)  from the ambient pure straining 
motion. We choose the x3 axis to be in the direction of the ambient vorticity. The 
velocity near the sphere is then (see (3 .12 ) )  approximately 

u = Qri x 1+ 5&1. E -1 I .  E . l), (3.26) 

where i is a unit vector in the direction of the x, axis, 1 = x / r  and c( = r - a )  < a. 
The corresponding velocity components in the directions of the 8- and #-co-ordinate 
lines, where r, 8, # are spherical polar co-ordinates with 8 = 0 in the direction of the 
x3 axis and B = &r, q5 = 0 in the direction of the x1 axis, are 

ug = c{ - T E , ,  sin 28 + $sin 28(Ell  cos 2q5 - E,, cos 2q5 + 2E1, sin 2 4 )  

+ 5 cos 28(E3, cos # + E,, sin d)}, 
u# = Q(a + 6 )  sin 8 + 5($(E2, - El l )  sin 8 sin 2q5 

(3.27) 

+ 5E1, sin 8 COB 2# + 5 cos B(E23 cos q5 - E31 sin $)}, (3 .28)  

the component u, near the sphere being found from 

a(u,sinO) au 
-$)- 2a sin ' (  8 ae 

u,=- - (3 .29)  

To a first approximation, when 6 < a, a material element of fluid moves on a circular 
orbit about the x, axis with speed aQ sin 8. The most important consequence of the 
small departures from uniform motion in a circular orbit is that the average value of 
the 8 component of velocity of a material element over one revolution is non-zero. 
This pole-ward drift velocity is approximately equal to the azimuthal average of 
(3 .27) ,  that is, to  

(ue) = 2n ue(c, 8,#)  d# = - J$<E33 sin 28. s:' (3 .30)  

Thus a material element migrates to one of the two poles (8 = 0,  n) when E,, > 0 
or to the equator (8 = +r) when E,, < 0 and, as the same average procedure on (3 .29)  
shows, moves away from the sphere surface there. The streamline path is a helix 
with wavy irregularities, the pitch of the helix being of order $JE3,//aQ and so smaller 
for streamlines closer to the surface. Since at  large PBclet number the transfer from 
the sphere takes place by fluid elements being brought close enough to the sphere 
surface to receive material by direct diffusion and then being carried far away from the 
sphere, it is clear that the transfer rate is determined here primarily by the migration 
to or from the poles and that it is approximately the same as for an axisymmetric 
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pure straining motion with rate of extension E,,in the directionof the axis of symmetry. 
Analytical confirmation that the wavy irregularities on the helical path of a material 

element cause only a small perturbation of the transfer rate may be obtained by 
considering the azimuthal-average Concentration (C). We write 

c = (C)+C' ,  u = (u)+u', 

where (uJ = R(a + () sin 8, (ue) is given by (3.30), and C' and u' are periodic functions 
of q5 with zero mean, and substitute in the boundary-layer equation 

An average of all terms in (3.31) then gives 

(3.31) 

(3.32) 

Our object is to show that the concentration fluctuation C' is small by comparison 
with C,-Co. The equation determining C' is found by subtracting (3.32) from (3.31) 
to be 

- u' . V(C), (3.33) 
82C' 
at2 (U) . vc' +U' . v c ' - ( U ' .  VC') - K- = 

and the boundary conditions on C' are 

and 
C' = 0 at g = 0 (where C = C,) 

C'+O as E+m (whereC+C,). 

Since C' vanishes outside the concentration boundary layer, the appropriate position 
variable in (3.33) is g/S, where 6 is a measure of the boundary-layer thickness (and 
&/a = O(P-*)), and we therefore write (3.33) as 

where E is a measure of the ambient rate of strain and P = a 2 E / K .  Now aC'laf3 and 
aC'/aq5 are of the same order of magnitude as C', and I(ue)I/Ea and Iu'IIEa are both 
of order &/a at points within the boundary layer. Thus when P % 1 the dominant 
term on the left-hand side of (3.34) is the first term (provided R / E  is not small), and 
the equation reduces approximately to 

= 0(8/a) .  
R ac,  U'.V<C> 

E(C,-C,)@ = -E(C,-Co) 

C' can be found explicitly in terms of (C) by integration, but it is sufficient to observe 
that C'/(C, - C,) is of order P-*. 

The fluctuation of the concentration about its azimuthal mean is thus small when 
P 9 1, and to leading order the equation (3.32) for the mean concentration reduces 
to that satisfied by C in the case of a steady axisymmetric ambient pure straining 
motion with rate of extension E,, (that is, o . E .o/w2, = E,, when expressed in a way 
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which isindependent of the co-ordinate system) in the direction of the axis of symmetry. 
Hence the asymptotic expression for the total transfer rate is found from (3.15) to be 

(3.36) 

This result holds for a very wide class of steady linear ambient velocity distributions, 
wiz. all except those for which either Iw I < E or I E,I is small in some sense. The above 
argument concerning equation (3.34) is not valid when Iwl/E is as small as P-4 
(because then the first term is not dominant), and as IwI/E-+ 0 the expression for N 
changes from (3.35) to that appropriate to a steady ambient pure straining motion 
represented by the rate-of-strain tensor Eii. If E, = 0 the poleward migration that is 
responsible for the convective transfer vanishes and the expression for the transfer 
is quite different, as we shall see in a moment. 

The result (3.35) is striking in its simplicity and generality, and it would be useful 
to undertake an experimental check. It is worth noting in this context that there is 
an alternative and possibly more convenient way of generating the relevant part of 
the required flow field, viz. by setting up a steady ambient pure straining motion and 
by applying a couple to the sphere and causing it to rotate with angular velocity 
40. The flow field generated in this way a t  small Reynolds number is identical with 
that considered above at all points near the sphere surface and so the asymptotic 
expression for the transfer should be the same in the two cases. The kind of set-up 
described by Purcell(1978) could be used to generate a two-dimensional pure straining 
motion, for instance, and rotation of the sphere about an inclined axis could perhaps 
be produced by suitable suspension of the sphere. 

The m e  E, = 0 

We see from (3.27) and (3.28) that when E,, = 0 the pole-ward displacement of a fluid 
element in one circuit about the rotation axis is zero, to the order of g, showing that 
the streamlines near the sphere surface are closed nearly circular paths. Convection 
consequently makes little contribution to the transfer in the neighbourhood of the 
sphere, and there is no basis for the Levich method of calculating the transfer rate. 
The resistance to transfer from the particle may be expected to be dominated by 
diffusion across the region of closed streamlines enclosing the particle, with the 
consequence that N+const. as P-tm. Thus here the suppression of convective 
transfer by ambient vorticity is more drastic, and reduces the order of magnitude of 
N .  Problems of transfer across a region of closed streamlines have recently been 
tackled by Poe & Acrivos (1976), using an approximate method which involves 
representation of C as a polynomial in a measure of distance from the sphere surface 
and which had been developed earlier by Acrivos (1971) for the particular case of a 
sphere in a simple shearing motion. These authors considered a two-dimensional 
ambient flow field represented by the vorticity (0 ,  0, 2Q) and principal rates of strain 
El and E, ( = -El )  in the (xl, x2) plane. The transfer from the sphere is here a function 
of the PQclet number u ~ ~ E , ( / K  and of the ratio E1/Q (with E,/Q = T 1 in the case of 
simple shearing motion). An ambient flow field for which E, = 0 is not necessarily 
two-dimensional (two-dimensionality would require E,, = 0 and E,, = 0 as well as 
E,, = 0,  when the vorticity is in the direction of the x, axis), but no detailed results 
for three-dimensional ambient flow fields with E, = 0 are yet available. 
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FIGURE 4. The rate of transfer from a sphere in a steady two-dimensional ambient flow field a t  
small particle Reynolds number and large PBclet number. The angular velocity in the ambient 
flow is f2 and the principal rates of strain are El, - E l .  The PBclet number P is defined as U~IE,I /K .  
The points marked 0 represent an approximate calculation of the transfer in the limit, as P -+ co, 
by Poe & Acrivos (1976). The lines parallel to the abscissa show the asymptotic values of N 8s 
IEl/f21 -+a, for given (large) P,  as found from (3.22). The broken curves are suggested inter- 
polations. 

Poe & Acrivos (1976) found that the constant to which N tends as P+co increases 
as the value of (EJRI is increased from unity. The increase is asymptotically linear, 
as would be expected from the fact that the region of closed streamlines across which 
the transfer takes place by diffusion becomes a shell of (non-uniform) thickness 
proportional to IEJR1-1 (as may be seen from (3.28)). Some of their numerical 
results are shown in figure 4. It should be noted that these results apply only when the 
PQclet number is so large that the concentration boundary layer at  the surface does 
not extend beyond the region of closed streamlines. The quantitative significance of 
this restriction can be seen from the horizontal lines that I have added to figure 4 
in order to show the values (obtained from (3.22)) to which the Nusselt number must 
tend as IE,/RI +co for given values of U ~ ~ E , I / K .  The Nusselt number presumably 
varies monotonically with lE1/Rl for given PQclet number, and the broken curves in 
figure 4 are my suggested interpolation curves. PBclet numbers for particles suspended 
in a fluid in motion are usually less than 2000 when the particle Reynolds number is 
less than unity. 

Poe & Acrivos were not able to obtain any results for 0 < 1 EJR,) < 1.0, when the 
streamlines far from the sphere are similar ellipses. However, we do know that N = 1 
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when El/Q = 0 and all the streamlines are circular, and it seems certain that the 
constant value to which N hnds  as P+co lies between 1 and 4.5 for values of IEl/SZl 
in this range. 

4. Summary of the main results for P Q 1 and P 9 1 and interpolations 
between them 

The theoretical results for the transfer rate described in the two previous sections 
are asymptotically valid for small and large values of the PBclet number. In  this 
section we restate the main results for a particle in various steady linear ambient 
flow fields. Where possible we shall show the results for P 4 1 and for P @ 1 on the 
one diagram in order to see the degree of uncertainty about the rate of transfer in 
the intermediate range of PBclet number. 

For the additional rate of transfer from a particle due to convection at  small PBclet 
number, we have the following three results which together cover virtually all kinds 
of linear ambient flow field. 

(a)  For any pure straining motion, 

where E = Eij Erj;  the numerical coefficient is likely to be correct to within 3 %. 

vorticity magnitude to E is not large compared with unity, 
(b )  For a general linear ambient velocity distribution in which the ratio of the 

the numerical coefficient here is approximate but is unlikely to be in error by more 
than 10%. 

(c) For a general linear ambient velocity distribution in which the vorticity magni- 
tude is significantly larger than E (or, more precisely, significantly larger than 

where E, = o . E . o/02. 
The results for the rate of transfer from a rigid spherical particle a t  large PBclet 

number and with small Reynolds number of the flow around the particle are as follows. 
( A )  For any pure straining motion, 

with an accuracy of about 1 o/o. 

(B)  For a general linear ambient velocity distribution in whicho $. 0 and E, $. 0, 

a2E, 8 N = 0.97 (7) . (4.5) 

(C) When E, = 0, N approaches a constant as P+co. Values of this constant have 
been calculated by Poe & Acrivos (1976) for the case of a two-dimensional linear 
ambient velocity distribution with IEl/Ql Z 1 and are shown in figure 4. For simple 
shearing motion (IEl/Ql = l), N+-4.6 as P+m. 
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FIGURE 5 .  The rate of transfer from a sphere as a function of PBclet number &E/K (where 
E = Eij  E j j )  for different steady ambient flow fields. The unbroken curves are theoretical asymp- 
totic relations and the broken curves are suggested interpolations. Curves (a) and ( A )  apply to 
any pure straining motion. Curve (b )  applies approximately to  an,y linear ambient velocity 
distribution in which R/E  is not large; and ( B )  applies to  any linear ambient velocity distribution 
in which R / E  is not small and E i  = *E2. Curve (G) applies to simple shearing motion in the limit 
P+CO. 

The results (a)  and ( A )  for small and large values of P in the case of a rigid sphere 
(for which No = 1) immersed in a pure straining motion are shown in figure 5. The 
two asymptotic relations run together so smoothly that there cannot be much error 
in the suggested interpolation curve. At a2E/K = 30, the small-P asymptotic form 
(4.1) gives N = 2.97 and the large-P asymptotic form (4.4) gives N = 2.80, a difference 
of only 6 yo. 

The results ( b )  and (B)  apply to very wide classes of linear ambient velocity dis- 
tribution, and they both apply to any linear ambient flow field such that Q / E  is 
neither large nor small compared with unity and E, + 0. These two results give N 
in terms of different parameters of the linear velocity distribution, so it is not possible 
to put the two asymptotic results on the same figure and interpolate between them 
unless the form of the linear velocity distribution is given. As a representative example 
we may suppose E: = $E2 (on the grounds that there are 9 terms like EZ1, in the expres- 
sion for E2) ,  and the result (B)  is shown in figure 5 for this case. Again there is not much 
uncertainty about the suggested interpolation curve. If Q / E  4 1 the results ( c )  and 
(B)  are applicable, and again interpolation is possible (but is not shown in figure 5). 
We thus have here reasonably accurate theoretical results over the whole range of 
values of the P6clet number for almost any linear ambient velocity distribution. 
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As an example of the rather different result which applies at  large PBclet number 
when E, = 0, we show in figure 5 the constant value of N appropriate to the case of 
simple shearing motion. This constant value is the asymptote for a curve of the form 
(2.23) a t  small PBclet number (which differs from the curve (b)  in figure 5 by being 
displaced vertically from it by only -0 .05 ) ,  but interpolation between the two 
asymptotic curves is not straightforward. 

I am grateful to David Jeffrey and John Sheryood for their help with some of the 
numerical calculations, and to Professor A. Acrivos for making available to me the 
relevant part of the dissertation by G. G. Poe and putting at  my disposal his extensive 
knowledge of past work on the problem of mass transfer from particles. 
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